A general synthetic strategy for oxide-supported metal nanoparticle catalysts.
نویسندگان
چکیده
Despite recent exciting progress in catalysis by supported gold nanoparticles, there remains the formidable challenge of preparing supported gold catalysts that collectively incorporate precise control over factors such as size and size-distribution of the gold nanoparticles, homogeneous dispersion of the particles on the support, and the ability to utilize a wide range of supports that profoundly affect catalytic performance. Here, we describe a synthetic methodology that achieves these goals. In this strategy, weak interface interactions evenly deposit presynthesized organic-capped metal nanoparticles on oxide supports. The homogeneous dispersion of nanoparticles on oxides is then locked in place, without aggregation, through careful calcination. The approach takes advantage of recent advances in the synthesis of metal and oxide nanomaterials and helps to bring together these two classes of materials for catalysis applications. An important feature is that the strategy allows metal nanoparticles to be well dispersed on a variety of oxides with few restrictions on their physical and chemical properties. Following this synthetic procedure, we have successfully developed efficient gold catalysts for green chemistry processes, such as the production of ethyl acetate from the selective oxidation of ethanol by oxygen at 100 degrees C.
منابع مشابه
A Sacrificial Coating Strategy Toward Enhancement of Metal-Support Interaction for Ultrastable Au Nanocatalysts.
Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the uniqu...
متن کاملCVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.
By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morpholog...
متن کاملSynthesis of Mono- and Bimetallic Au-based Nanoparticle Catalysts Utilizing Solid Phase Dendrimer Templates
Introduction The desire to controllably tune catalyst properties has generated increased interest in the controlled preparation of supported nanoparticle catalysts. Particle size, composition, and morphology may have substantial influences on catalytic activity and, more importantly, selectivity. However, few preparative routes exist to prepare supported catalysts of welldefined morphologies. S...
متن کاملA comparative study between transition-metal-substituted Keggin-type tungstosilicates supported on anatase leaf as catalyst for synthesis of symmetrical disulfides
Transition-metal-substituted (TMS) polyoxometalates of the general formula [SiW9M3O39], (where M = first row transition metal), has been synthesized and supported on anatase by sol–gel method under oil-bath condition. The tetrabutylammonium (TBA) salts of the Keggin-type polyoxotungstates [SiW9M3O39], (M = VII, CrII, MnII, FeII CoII and NiII), proved to be green, reusable, and ...
متن کاملCatalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT
Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 44 شماره
صفحات -
تاریخ انتشار 2006